测试你的代码

测试你的代码非常重要。

常常将测试代码和运行代码一起写是一种非常好的习惯。聪明地使用这种方法将会帮助你更加精确地定义代码的含义,并且代码的耦合性更低。

测试的通用规则:

  • 测试单元应该集中于小部分的功能,并且证明它是对的。
  • 每个测试单元应该完全独立。每个都能够单独运行,除了调用的命令,都需在测试套件中。要想实现这个规则,测试单元应该加载最新的数据集,之后再做一些清理。这通常用方法 setUp()tearDown() 处理。
  • 尽量使测试单元快速运行。如果一个单独的测试单元需要较长的时间去运行,开发进度将会延迟,测试单元将不能如期常态性运行。有时候,因为测试单元需要复杂的数据结构,并且当它运行时每次都要加载,所以其运行时间较长。把运行吃力的测试单元放在单独的测试组件中,并且按照需要运行其它测试单元。
  • 学习使用工具,学习如何运行一个单独的测试用例。然后,当在一个模块中开发了一个功能时,经常运行这个功能的测试用例,理想情况下,一切都将自动。
  • 在编码会话前后,要常常运行完整的测试组件。只有这样,你才会坚信剩余的代码不会中断。
  • 实现钩子(hook)是一个非常好的主意。因为一旦把代码放入分享仓库中,这个钩子可以运行所有的测试单元。
  • 如果你在开发期间不得不打断自己的工作,写一个被打断的单元测试,它关于下一步要开发的东西。当回到工作时,你将更快地回到原先被打断的地方,并且步入正轨。
  • 当你调试代码的时候,首先需要写一个精确定位bug的测试单元。尽管这样做很难,但是捕捉bug的单元测试在项目中很重要。
  • 测试函数使用长且描述性的名字。这边的样式指导与运行代码有点不一样,运行代码更倾向于使用短的名字,而测试函数不会直接被调用。在运行代码中,square()或者甚至sqr()这样的命名都是可以的,但是在测试代码中,你应该这样取名test_square_of_number_2(),test_square_negative_number()。当测试单元失败时,函数名应该显示,而且尽可能具有描述性。
  • 当发生了一些问题,或者不得不改变时,如果代码中有一套不错的测试单元,维护将很大一部分依靠测试组件解决问题,或者修改确定的行为。因此测试代码应该尽可能多读,甚至多于运行代码。目的不明确的测试单元在这种情况下没有多少用处。
  • 测试代码的另外一个用处是作为新开发人员的入门。当工作基于代码,运行并且阅读相关的测试代码是一个非常好的做法。开发人员将会或者应该发现热点,而这将引起困难和其它情况,如果他们一定要加一些功能,第一步应该是要增加一个测试单元,通过这种方法,确保新功能不再是一个没有被嵌入到接口中的工作路径。

基本

单元测试

unittest 包括Python标准库中的测试模型。任何一个使用过Junit,nUnit,或CppUnit工具的人对它的API都会比较熟悉。

创建测试用例通过继承 unittest.TestCase 来实现.

import unittest

def fun(x):
    return x + 1

class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(fun(3), 4)

因为Python 2.7单元测试也包括自己的发现机制。

文档测试

doctest 模块查找零碎文本,就像在Python中docstrings内的交互式会话,执行那些会话以证实工作正常。

doctest模块的用例相比之前的单元测试有所不同:它们通常不是很详细,并且不会用特别的用例或者处理模糊的回归bug。作为模块和其部件主要用例的表述性文档,doctest模块非常有用。

在函数中一个简单的doctest:

def square(x):
    """Squares x.

    >>> square(2)
    4
    >>> square(-2)
    4
    """

    return x * x

if __name__ == '__main__':
    import doctest
    doctest.testmod()

从命令行中运行这个模块时,doctest模块将会运行并且细述是否一切如docstrings中描述一样工作良好。

工具

py.test

相比于Python标准的单元测试模块,py.test是一个没有模板的选择。

$ pip install pytest

尽管这个测试工具功能完备,并且可扩展,但是它语法很简单。创建一个测试组件和写一个带有诸多函数的模块一样容易:

# content of test_sample.py
def func(x):
    return x + 1

def test_answer():
    assert func(3) == 5

运行命令py.test

$ py.test
=========================== test session starts ============================
platform darwin -- Python 2.7.1 -- pytest-2.2.1
collecting ... collected 1 items

test_sample.py F

================================= FAILURES =================================
_______________________________ test_answer ________________________________

    def test_answer():
>       assert func(3) == 5
E       assert 4 == 5
E        +  where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.02 seconds =========================

要比单元测试模型中相同功能所要求的工作量少得多。

Nose

nose继承测试单元,能够使测试更加容易。

$ pip install nose

nose自动化测试发现并节省人工创建测试组件的麻烦。它也提供各种插件,例如xUnit兼容性测试输出,覆盖度报告和测试选择。

tox

tox是自动化测试管理和针对多种解释器配置测试工具。

$ pip install tox

tox允许通过简单的初始化样式配置文件,配置复杂的多参数测试矩阵。

Unittest2

Unittest2是Python2.7中unittest模型的补丁,它的API有所改善,并且对Python之前版本中已有的内容有了更好的说明。

如果使用Python2.6版本或者以下,需要使用pip安装unittest2。

$ pip install unittest2

将来你可能想要以unittest之名导入模块,目的是更容易地把代码移植到新的版本中。

import unittest2 as unittest

class MyTest(unittest.TestCase):
    ...

如果切换到新的Python版本,并且不再需要unittest2模块,你只需要在测试模块中改变import内容,而不必改变其它代码。

mock

unittest.mock 是Python中用于测试的一个库。在Python3.3版本中,标准库中就有。 标准库.

对于Python相对早的版本,如下操作:

$ pip install mock

在测试环境下,使用mock对象能够替换部分系统,并且对它们如何被使用做了声明。 例如,你可以对一个方法打猴子补丁:

例如,你可以对一个方法打猴子补丁:

from mock import MagicMock
thing = ProductionClass()
thing.method = MagicMock(return_value=3)
thing.method(3, 4, 5, key='value')

thing.method.assert_called_with(3, 4, 5, key='value')

在测试环境下,对于模型中的mock类或对象,使用补丁修饰器。在下面这个例子中,一直返回相同结果的外部查询系统使用mock替换(但仅用在测试期间)。

def mock_search(self):
    class MockSearchQuerySet(SearchQuerySet):
        def __iter__(self):
            return iter(["foo", "bar", "baz"])
    return MockSearchQuerySet()

# SearchForm here refers to the imported class reference in myapp,
# not where the SearchForm class itself is imported from
@mock.patch('myapp.SearchForm.search', mock_search)
def test_new_watchlist_activities(self):
    # get_search_results runs a search and iterates over the result
    self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

mock有许多其它方法,你可以配置它,并且控制它的动作。